已知a,b,c是平面向量,下列命题中真命题的个数是( )①(a·b)·c=a·(b
时间:2024-04-18 17:40:41 栏目:学习方法
题目内容:
已知a,b,c是平面向量,下列命题中真命题的个数是()
①(a·b)·c=a·(b·c);
②|a·b|=|a|·|b|;
③|a+b|2=(a+b)2;
④a·b=b·c ⇒a=c
A.1
B.2
C.3
D.4
最佳答案:
A
答案解析:
对于①,因为a·b,b·c是两个数,显然,(a·b)·c=a·(b·c)不一定恒成立;对于②,因为|a·b|=|a|·|b|·|cosθ|,显然也不恒成立;对于④,由于a·b与b·c是两个具体的数,由两个数不可能产生两个向量相等,于是也不正确;而对于③,由于|a+b|2=a2+2a·b+b2,而(a+b)2=a2+2a·b+b2,显然二者是相等的.故选A.
考点核心:
平面向量在几何、物理中的应用
1、向量在平面几何中的应用:
(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;
(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;
(3)证明垂直问题,常用向量垂直的充要条件;
1、向量在三角函数中的应用:
(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;
(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:
(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;
(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

订阅