如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含
时间:2024-04-24 09:23:05 栏目:学习方法题目内容:
如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则AM•AN的最大值为()
A.3
B.23
C.6
D.9
最佳答案:
:以点A位坐标原点建立如图所示的直角坐标系,由于菱形ABCD的边长为2,∠A=60°,M为DC的中点,
故点A(0,0),则B(2,0),C(3,3),D(1,3),M(2,3).
设N(x,y),N为平行四边形内(包括边界)一动点,对应的平面区域即为平行四边形ABCD及其内部区域.
因为 AM=(2,3),AN=(x,y),则AM•AN=2x 3y,
结合图象可得当目标函数z=2x 3y 过点C(3,3)时,z=2x 3y取得最大值为9,
故选D.
考点核心:
平面向量在几何、物理中的应用
1、向量在平面几何中的应用:
(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;
(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;
(3)证明垂直问题,常用向量垂直的充要条件;
1、向量在三角函数中的应用:
(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;
(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:
(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;
(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

订阅