正整数n满足以下条件:任意n个大于1且不超过2009的两两互素的正整数中,至少有一个
时间:2024-01-11 16:57:18 栏目:学习方法
【导读】:4304目录(https://www.4304.cn)在线提供,学习方法「正整数n满足以下条件:任意n个大于1且不超过2009的两两互素的正整数中,至少有一个」,供学习方法爱好者免费阅读。本文地址:https://www.4304.cn/news/318071.html
题目内容:
正整数n满足以下条件:任意n个大于1且不超过2009的两两互素的正整数中,至少有一个素数,求最小的n.
最佳答案:
由于22,32,52,72,112,132,172,192,232,292,312,372,412,432这14个合数都小于2009且两两互质,
因此n≥15.
而n=15时,我们取15个不超过2009的互质合数a1,a2,…,a15的最小素因子p1,p2,p15,
则必有一个素数≥47,不失一般性设p15≥47,
由于p15是合数a15的最小素因子,
因此a15≥p152≥47>2009,矛盾.
因此,任意15个大于1且不超过的互质正整数中至少有一个素数.
综上所述,n最小是15.
故答案为:
15.
答案解析:
该题暂无解析
考点核心:
有理数的定义:有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

订阅