cos(α±β)等于什么
时间:2023-10-17 21:36:03 栏目:生活资讯
cos(α±β)等于
一、cos(α-β)=cosαcosβ+sinαsinβ。
二、cos(α+β)=cosαcosβ-sinαsinβ。
cos代表的是余弦,表示三角形中一个角的相邻的短的那条边比斜边的值。余弦函数是三角函数的一种。在直角三角形中∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写做cosa=AC/AB。余弦函数f(x)=cosx(x∈R)。
余弦定理是欧氏平面几何学基本定理。余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
利用正弦定理证法
在△ABC中,
sin²A+sin²B-sin²C
=[1-cos(2A)]/2+[1-cos(2B)]/2-[1-cos(2C)]/2(降幂公式)
=-[cos(2A)+cos(2B)]/2+1/2+1/2-1/2+[cos(2C)]/2
=-cos(A+B)cos(A-B)+[1+cos(2C)]/2(和差化积)
=-cos(A+B)cos(A-B)+cos²C(降幂公式)
=cosC*cos(A-B)-cosC*cos(A+B)(∠A+∠B=180°-∠C以及诱导公式)
=cosC[cos(A-B)-cos(A+B)]
=2cosC*sinA*sinB(和差化积)(由此证明余弦定理角元形式)
设△ABC的外接圆半径为R
∴(RsinA)²+(RsinB)²-(RsinC)²=2(RsinA)*(RsinB)*cosC
∴a²+b²-c²=2ab*cosC(正弦定理)
∴c²=a²+b²-2ab*cosC
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

订阅