首页 > 新闻资讯 > 生活资讯生活资讯 订阅

矩阵相似对角化的条件

时间:2023-10-17 21:31:18 栏目:生活资讯
【导读】:4304目录(https://www.4304.cn)在线提供,生活资讯「矩阵相似对角化的条件」,供生活资讯爱好者免费阅读。本文地址:https://www.4304.cn/news/76577.html
最佳答案:相似对角化意思是取对角化矩阵的时候,在满足特征值分别可取与原矩阵阶数相同的特征向量时,该对角矩阵即与原矩阵相似相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的相似对角化的条件是:n阶方阵存在n个线性无关的特征向量;如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵;如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重复次数

相似对角化是线性代数中最重要的知识点之一。如果一个方阵A相似于对角矩阵,也就是说存在一个可逆矩阵P使得P-1AP是对角矩阵,则A就被称为可以相似对角化的。相似对角化的条件是:n阶方阵存在n个线性无关的特征向量;如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵;如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重复次数。相似对角化意思是取对角化矩阵的时候,在满足特征值分别可取与原矩阵阶数相同的特征向量时,该对角矩阵即与原矩阵相似。相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。设M为元素取自交换体K中的n阶方阵,将M对角化,就是确定一个对角矩阵D及一个可逆方阵P,使M=PDP-1。设f为典范对应于M的Kn的自同态,将M对角化,就是确定Kn的一个基,使在该基中对应f的矩阵是对角矩阵。对角矩阵是最简单的一类矩阵,研究起来非常方便。这个过程相当于在一个等价类中选取最顺眼的元素研究。

为什么要研究相似对角化?

因为对角矩阵形式简单,它的行列式就是对角线元素的乘积,它的对角线元素就是它的特征值(换言之,矩阵的特征值的累乘就是矩阵的行列式)。矩阵的相似不变量有:行列式、特征多项式、特征值、迹、最小多项式、行列式因子、不变因子、初等因子等。

对角化

设M为元素取自交换体K中的n阶方阵,将M对角化,就是确定一个对角矩阵D及一个可逆方阵P,使M=PDP-1。设f为典范对应于M的Kn的自同态,将M对角化,就是确定Kn的一个基,使在该基中对应f的矩阵是对角矩阵。对角矩阵是指只有主对角线上含有非零元素的矩阵,即,已知一个n×n矩阵 ,如果对于 ,则该矩阵为对角矩阵。如果存在一个矩阵 ,使 的结果为对角矩阵,则称矩阵 将矩阵 对角化。对于一个矩阵来说,不一定存在将其对角化的矩阵,但是任意一个n×n矩阵如果存在n个线性不相关的特征向量,则该矩阵可被对角化。

对角矩阵

对角矩阵是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。

标签:

版权声明:

1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

2、本站仅提供信息发布平台,不承担相关法律责任。

3、若侵犯您的版权或隐私,请联系本站管理员删除。

4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

生活资讯推荐

本网站所有的文章都转载与网络(版权为原作者)我们会尽可能注明出处,但不排除来源不明的情况。转载是处于提供更多信息以参考使用或学习、交流、科研之目的,不用于商业用途。转载无意侵犯版权,如转载文章涉及您的权益等问题,请作者速来电话和邮件告知,我们将尽快处理。