> 新闻资讯 > 学习方法学习方法 订阅

已知OP=(2,1),OA=(1,7),OB=(5,1),设M是直线OP上一点,O是

时间:2024-04-24 11:38:33 栏目:学习方法
【导读】:4304目录(https://www.4304.cn)在线提供,学习方法「已知OP=(2,1),OA=(1,7),OB=(5,1),设M是直线OP上一点,O是」,供学习方法爱好者免费阅读。本文地址:https://www.4304.cn/news/484101.html
题目内容:

已知OP=(2,1),OA=(1,7),OB=(5,1),设M是直线OP上一点,O是坐标原点.

(1)求使MA•MB取最小值时的OM;

(2)对(1)中的点M,求∠AMB的余弦值.

最佳答案:

(1)设M(x,y),则OM=(x,y),

由题意可知OM∥OP,又OP=(2,1).

所以x-2y=0即x=2y,所以M(2y,y),

则MA•MB=(1-2y,7-y)•(5-2y,1-y)=5y2-20y 12=5(y-2)2-8,

当y=2时,MA•MB取得最小值,

此时M(4,2),即OM=(4,2).

(2)∵cos∠AMB=MA•MB|MA||MB|=(-3,5)•(1,-1)34×2=-41717.

∴∠AMB的余弦值为-41717

考点核心:

平面向量在几何、物理中的应用

1、向量在平面几何中的应用:

(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;

(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;

(3)证明垂直问题,常用向量垂直的充要条件;

1、向量在三角函数中的应用:

(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;

(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。

2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。

3、向量在解析几何中的应用:

(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;

(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。

标签:

版权声明:

1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

2、本站仅提供信息发布平台,不承担相关法律责任。

3、若侵犯您的版权或隐私,请联系本站管理员删除。

4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

学习方法推荐

最新

本网站所有的文章都转载与网络(版权为原作者)我们会尽可能注明出处,但不排除来源不明的情况。转载是处于提供更多信息以参考使用或学习、交流、科研之目的,不用于商业用途。转载无意侵犯版权,如转载文章涉及您的权益等问题,请作者速来电话和邮件告知,我们将尽快处理。