如图,已知E、F为平面上的两个定点|EF|=6,|FG|=10,且2EH=EG,HP
时间:2024-04-24 09:37:35 栏目:学习方法题目内容:
如图,已知E、F为平面上的两个定点|EF|=6,|FG|=10,且2EH=EG,HP•GE=0(G为动点,P是HP和GF的交点).
(Ⅰ)建立适当的平面直角坐标系求出点P的轨迹方程;
(Ⅱ)若点P的轨迹上存在两个不同的点A、B,且线段AB的中垂线与直线EF相交于一点C,证明|OC|<95(O为EF的中点).
最佳答案:
(Ⅰ)以EF所在的直线为x轴,EF的中垂线为y轴,建立平面直角坐标系.
由题设2EH=EG,HP•EG=0,
∴|PG|=|PE|,而|PF| |PE|=|PG|=2a.
∴点P是以E、F为焦点、长轴长为10的椭圆.
故点P的轨迹方程是x225 y216=1.…(4分)
(Ⅱ)设A(x1,y1),B(x2,y2),C(x0,0).
∴x1≠x2,且|CA|=|CB|,即(x1-x0)2 y12=(x2-x0)2 y22.
又A、B在轨迹上,∴x1225 y1216=1,x2225 y2216=1.
即y12=16-1625x12,y22=16-1625x22.
代入整理,得2(x2-x1)•x0=925(x22-x12).
∵x1≠x2,∴x0=9(x1 x2)50.
∵-5≤x1≤5,-5≤x2≤5,∴-10≤x1 x2≤10.
∵x1≠x2,∴-10<x1 x2<10.
∴-95<x0<95,即|OC|<95.…(13分)
考点核心:
平面向量在几何、物理中的应用
1、向量在平面几何中的应用:
(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;
(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;
(3)证明垂直问题,常用向量垂直的充要条件;
1、向量在三角函数中的应用:
(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;
(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:
(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;
(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

订阅