已知抛物线y2=2px(p>0),过点E(m,0)(m≠0)的直线交抛物线于点M、N
时间:2024-04-24 01:28:20 栏目:学习方法
题目内容:
已知抛物线y2=2px(p>0),过点E(m,0)(m≠0)的直线交抛物线于点M、N,交y轴于点P,若PM=λME,PN=μNE,则λ μ=()
A.1
B.-12
C.-1
D.-2
最佳答案:
分别设M,N,P的坐标为(x1,y1),(x2,y2),(x0,y0),
∵PM=λME,PN=μNE,
∴(x1-x0,y1-y0)=λ(m-x1,-y1)(x2-x0,y2-y0)=μ(m-x2,-y2),可得到x1,x2,y1,y2,
直线MN的方程为:y-y1x-x1=y2-y1x2-x1,可用y来表示x,
然后带到抛物线表达式中,
根据韦达定理,求出y1,y2的积、和,分别等于之前算出的y1,y2的积、和.从而得出λ μ=-1.
故选C.
考点核心:
平面向量在几何、物理中的应用
1、向量在平面几何中的应用:
(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;
(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;
(3)证明垂直问题,常用向量垂直的充要条件;
1、向量在三角函数中的应用:
(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;
(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:
(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;
(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

订阅