将1,2,3,…,20这20个正整数任意分为10组,每组两个数,现将每组的两个数中任
时间:2024-03-13 11:23:05 栏目:学习方法
【导读】:4304目录(https://www.4304.cn)在线提供,学习方法「将1,2,3,…,20这20个正整数任意分为10组,每组两个数,现将每组的两个数中任」,供学习方法爱好者免费阅读。本文地址:https://www.4304.cn/news/437535.html
题目内容:
将1,2,3,…,20这20个正整数任意分为10组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入12(|a-b| a b)中进行计算,求出其结果,10组数代入后可求得10个值,则这10个值的和的最大值是______.
最佳答案:
①若a≥b,则代数式中绝对值符号可直接去掉,
∴代数式等于a,
②若b>a则绝对值内符号相反,
∴代数式等于b,
由此一来,只要20个自然数里面最大的十个数字从11到20任意俩个数字不同组,
这样最终求得十个数之和最大值就是十个数字从11到20的和,
11 12 13 … 20=155.
故答案为:
155.
答案解析:
该题暂无解析
考点核心:
绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。绝对值用“||”来表示。在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

订阅