首页 > 新闻资讯 > 生活资讯生活资讯 订阅

条件概率公式

时间:2023-10-18 11:43:14 栏目:生活资讯
【导读】:4304目录(https://www.4304.cn)在线提供,生活资讯「条件概率公式」,供生活资讯爱好者免费阅读。本文地址:https://www.4304.cn/news/40963.html
最佳答案:P(AB)=P(A)P(B|A)=P(B)P(A|B)

学过概率理论的人都知道条件概率的公式:P(AB)=P(A)P(B|A)=P(B)P(A|B);即事件A和事件B同时发生的概率等于在发生A的条件下B发生的概率乘以A的概率。由条件概率公式推导出贝叶斯公式:P(B|A)=P(A|B)P(B)/P(A);即,已知P(A|B),P(A)和P(B)可以计算出P(B|A)。

假设B是由相互独立的事件组成的概率空间{B1,b2,...bn}。则P(A)可以用全概率公式展开:P(A)=P (A|B1)P(B1)+P(A|B2)P(B2)+..P(A|Bn)P(Bn)。贝叶斯公式表示成:P(Bi|A)=P(A|Bi)P(Bi)/(P(A|B1)P(B1)+P(A|B2)P(B2)+..P(A|Bn)P(Bn));常常把P(Bi|A)称作后验概率,而P(A|Bn)P(Bn)为先验概率。而P(Bi)又叫做基础概率。

贝叶斯法则的原理

通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯法则就是这种关系的陈述。

作为一个规范的原理,贝叶斯法则对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中概率如何被赋值有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯法则。

贝叶斯法则是关于随机事件A和B的条件概率和边缘概率的。

条件概率公式

贝叶斯概率的历史

贝叶斯理论和贝叶斯概率以托马斯·贝叶斯(1702-1761)命名,他证明了现在称为贝叶斯定理的一个特例。术语贝叶斯却是在1950年左右开始使用,很难说贝叶斯本人是否会支持这个以他命名的概率非常广义的解释。拉普拉斯证明了贝叶斯定理的一个更普遍的版本,并将之用于解决天体力学、医学统计中的问题,在有些情况下,甚至用于法理学。但是拉普拉斯并不认为该定理对于概率论很重要。他还是坚持使用了概率的经典解释。

弗兰克·普伦普顿·拉姆齐在《数学基础》(1931年)中首次建议将主观置信度作为概率的一种解释。Ramsey视这种解释为概率的频率解释的一个补充,而频率解释在当时更为广泛接受。统计学家Bruno de Finetti于1937年采纳了Ramsey的观点,将之作为概率的频率解释的一种可能的代替。L. J. Savage在《统计学基础》(1954年)中拓展了这个思想。

有人试图将“置信度”的直观概念进行形式化的定义和应用。最普通的应用是基于打赌:置信度反映在行为主体愿意在命题上下注的意愿上。

当信任有程度的时候,概率计算的定理测量信任的理性程度,就像一阶逻辑的定理测量信任的理性程度一样。很多人将置信度视为经典的真值(真或假)的一种扩展。

Harold Jeffreys, Richard T. Cox, Edwin Jaynes和I. J. Good研探了贝叶斯理论。其他著名贝叶斯理论的支持者包括John Maynard Keynes和B.O. Koopman。

标签:

版权声明:

1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

2、本站仅提供信息发布平台,不承担相关法律责任。

3、若侵犯您的版权或隐私,请联系本站管理员删除。

4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

生活资讯推荐

本网站所有的文章都转载与网络(版权为原作者)我们会尽可能注明出处,但不排除来源不明的情况。转载是处于提供更多信息以参考使用或学习、交流、科研之目的,不用于商业用途。转载无意侵犯版权,如转载文章涉及您的权益等问题,请作者速来电话和邮件告知,我们将尽快处理。