什么是单位化法
时间:2024-01-06 09:33:49 栏目:学习方法
单位化法是将各种“总数”化成单位数字,主要是以每一股普通股为单位进行分析的方法。例如,将税后净利总数除以发行在外的普通股股数,可以得到“每股税后净利”;将“净资产”除以发行在外的普通股股数,可以得到“每股净资产”等。单位化法可以清晰地反映每一股股票的权益。
向量是有方向和大小的量,所谓单位化就是保持向量方向不变,将其长度化为1,正交化是指将线性无关向量系转化为正交系的过程。正交变换化二次型为标准型中的“单位化”是Schmidt正交化的最后一个步骤,一般就是将该向量作为分子,该向量的模(常数)作为分母写出来即可。
什么是单位化,正交化
单位化是保持向量方向不变,将其长度化为1;
正交化是指将线性无关向量系转化为正交系的过程。设{xn}是内积空间H中有限个或可列个线性无关的向量,则必定有H中的规范正交系{en}使得对每个正整数n(当{xn}只含有m个向量,要求n≤m),xn是e1,e2,…,en的线性组合。
施密特正交化:从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。
扩展资料:
与单位向量有关的性质如下:
1、单位向量的长度为1个单位,方向不受限制;
2、起点为原点的单位向量,终点分布在单位圆上,常可设为
反之亦然。
3、如果AB为非零向量,那么与AB共线的单位向量为
4、单位向量具有确定的方向。单位向量有无数个。
求助 什么情况需要单位化什么时候正交化
以二次型矩阵A的特征矩阵为基础,利用正交化法进行变换,思路是正交矩阵(AAT=E)的转置等于逆,利用正交矩阵使A对角化(以特征值为对角线元素的对角矩阵)。
注意:正交矩阵不同列内积均为0,也就是列向量正交,且每列元素平方和均为1,也就是单位化,矩阵列向量正交不代表矩阵就是正交矩阵。
分两种情况:二次型矩阵A是实对称矩阵(必可对角化),如果其特征值λ互异,那么对应特征向量必正交(对角称矩阵的性质),由其构成的矩阵只需单位化(列向量分别除以模),就可得到正交变换矩阵;
否则,二次型矩阵A相同特征值对应的特征向量,取基础解系,需要且只需对基础解系施密特正交变换(正交化),然后与其它互异特征值对应的特征向量一起构成矩阵,并单位化。
扩展资料:
由于把一个正交向量组中每个向量经过单位化,就得到一个标准正交向量组,所以,上述问题的关键是如何由一个线性无关向量组来构造出一个正交向量组,我们以3个向量组成的线性无关组为例来说明这个方法。
施密特正交化
施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。
从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。
矩阵的来源:
矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。
日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则 。
矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。
英国数学家阿瑟·凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。
他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。
凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。
参考资料来源:百度百科--单位化法
参考资料来源:百度百科--正交化
版权声明:
1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。
2、本站仅提供信息发布平台,不承担相关法律责任。
3、若侵犯您的版权或隐私,请联系本站管理员删除。
4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

订阅