> 新闻资讯 > 学习方法学习方法 订阅

什么是标准差

时间:2024-01-06 03:51:06 栏目:学习方法
【导读】:4304目录(https://www.4304.cn)在线提供,学习方法「什么是标准差」,供学习方法爱好者免费阅读。本文地址:https://www.4304.cn/news/286047.html

标准差是表示分散程度的统计概念以及表示精确度的重要指标,同时也是反映一组数据离散程度最常用的一种量化形式。标准差常用于根据基金净值在一段时间内波动的情况进行计算,若标准差越大,表示净值的涨跌幅度越激烈,其风险程度也越大。较大的标准差代表大部分的数值和其平均值之间差异较大,较小的标准差代表大部分数值较接近平均值。

通过对企业投资活动的标准差进行分析,有利于企业对该项投资活动风险大小的评估,为企业避免因投资风险所产生的不必要的损失。



标准差是什么意思?

标准差指的是:

标准差,是离均差平方的算术平均数的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。

标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。

标准差的应用:

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。

当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远,则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。

标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。

标准差是什么

标准差(Standard Deviation) ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。

标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。

扩展资料: 

方差统计学意义:

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

参考资料来源:百度百科-方差

参考资料来源:百度百科-标准差

标签:

版权声明:

1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

2、本站仅提供信息发布平台,不承担相关法律责任。

3、若侵犯您的版权或隐私,请联系本站管理员删除。

4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

上一篇:工商管理acca免考几门 下一篇:

学习方法推荐

本网站所有的文章都转载与网络(版权为原作者)我们会尽可能注明出处,但不排除来源不明的情况。转载是处于提供更多信息以参考使用或学习、交流、科研之目的,不用于商业用途。转载无意侵犯版权,如转载文章涉及您的权益等问题,请作者速来电话和邮件告知,我们将尽快处理。