> 新闻资讯 > 学习方法学习方法 订阅

标准差的概述

时间:2024-01-06 03:35:39 栏目:学习方法
【导读】:4304目录(https://www.4304.cn)在线提供,学习方法「标准差的概述」,供学习方法爱好者免费阅读。本文地址:https://www.4304.cn/news/285430.html

标准差是一种表示分散程度的统计观念,即是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大,一个较小的标准差,代表这些数值较接近平均值。

标准差广泛运用在股票以及共同基金投资风险的衡量上,主要是根据基金净值于一段时间内波动的情况计算而来的。一般而言,标准差越大,说明净值的涨跌较剧烈,风险程度也较大。此外,标准差可以用来刻画股票市场未来价格取值的不确定性,即是股票市场价格波动,实现对股票市场风险的分析。



医学检验生化质控的标准差是什么?

方法是用单一浓度未定值血清,在天内、天间反复测定20次,计算均值(X)、标准差(S)和变异系数(CV),绘制X-S质控图,得到均值线(X)、警告线(X±2S)和失控线(X±3S)。与质控图制作相同批号的控制血清,每天随病人标本分析,结果点在图上,直线连接。

正常分布规律:95%数据落在X±2S内;不能有连续5次结果在同一侧;不能有5次结果渐升或渐降;不能连续2个点落在X±2S以外;不应该有落在X±3S以外的点。

异常表现:

①漂移,提示存在系统误差;

②趋势性变化,说明试剂或仪器的性能已发生变化;

③精度变化,提示测定的偶然误差较大。

扩展资料:

质控规则概述:

质控规则是解释质控数据和作出质控状态判断的决策标准。质控规则以符号AL表示。A是测定质控标本数或超过质控限(L)的质控测定值的个数。L是质控限。

当质控测定值超过质控规则所规定的质控限时,则判断该分析批违背此规则,视为失控。例如,12s质控规则,其中A为一个质控测定值,L为X±2s,当一个质控测定值超过X±2s时,即判断为失控。

参考资料来源:百度百科-质控

总结归纳方差的性质

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。以下是我整理的总结归纳方差的性质,一起来看看吧。

总结归纳方差的性质 篇1

一.方差的概念与计算公式

例1 两人的5次测验成绩如下:

X: 50,100,100,60,50 E(X )=72

Y: 73, 70, 75,72,70 E(Y )=72。

平均成绩相同,但X 不稳定,对平均值的偏离大。

方差描述随机变量对于数学期望的偏离程度。

单个偏离是

消除符号影响

方差即偏离平方的均值,记为D(X ):

直接计算公式分离散型和连续型,具体为:

这里 是一个数。推导另一种计算公式

得到:“方差等于平方的均值减去均值的平方”。

其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动

二.方差的性质

1.设C为常数,则D(C) = 0(常数无波动)

2. D(CX )=C2 D(X ) (常数平方提取)

证:

特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)

特别地

独立前提的逐项求和,可推广到有限项。

方差公式:

平均数:M=(x1 x2 x3 … xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)

方差公式:S=〈(M-x1) (M-x2) (M-x3) … (M-xn)〉╱n

三.常用分布的方差

1.两点分布

2.二项分布

X ~ B ( n, p )

引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布),

3.泊松分布(推导略)

4.均匀分布

另一计算过程为

5.指数分布(推导略)

6.正态分布(推导略)

7.t分布 :其中X~T(n),E(X)=0D(X)=n/(n-2)

8.F分布:其中X~F(m,n),E(X)=n/(n-2)

~

正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的

总结归纳方差的性质 篇2

第一章 实数

一、 重要概念 1.数的分类及概念 数系表:

说明:"分类"的原则:

1、)相称(不重、不漏) 2)有标准

2.非负数:正实数与零的统称。(表为:x≥0)

性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:

①定义及表示法

②性质:A.a≠1/a(a≠±1)B.1/a中,a≠0C.01a&gt1时,1/a&lt1D.积为1。

4.相反数:

①定义及表示法

②性质:A.a≠0时,a≠-aB.a与-a在数轴上的位置C.和为0,商为-1。

5.数轴:

①定义("三要素")

②作用:A.直观地比较实数的大小B.明确体现绝对值意义C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数-自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:

①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号"││"是"非负数"的标志③数a的绝对值只有一个④处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

二、 实数的运算

1. 运算法则(加、减、乘、除、乘方、开方)

2. 运算定律(五个-加法[乘法]交换律、结合律[乘法对加法的]

分配律)

3. 运算顺序:A.高级运算到低级运算B.(同级运算)从"左"

到"右"(如5÷ ×5)C.(有括号时)由"小"到"中"到"大"。

三、 应用举例(略)

附:典型例题

1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│ │x-b│

=b-a.

2.已知:a-b=-2且ab&lt0,(a≠0,b≠0),判断a、b的符号。

第二章 代数式

重点代数式的有关概念及性质,代数式的运算

内容提要

一、 重要概念

分类:

1.代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:

①根据除式中有否字母,将整式和分式区别开根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

=x, =│x│等。

4.系数与指数

区别与联系:

①从位置上看②从表示的意义上看

5.同类项及其合并

条件:

①字母相同②相同字母的指数相同

合并依据:乘法分配律

6.根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:

①从外形上判断②区别: 、 是根式,但不是无理式(是无理数)。

7.算术平方根

⑴正数a的正的平方根( [a≥0-与"平方根"的区别])

⑵算术平方根与绝对值

① 联系:都是非负数, =│a│

②区别:│a│中,a为一切实数中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:

①被开方数的因数是整数,因式是整式②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数

⑴ ( -幂幂,乘方运算)

① a&gt0时, &gt0②a&lt0时,&gt0(n是偶数),&lt0(n是奇数)

⑵零指数: =1(a≠0)

负整指数: =1/ (a≠0,p是正整数)

二、 运算定律、性质、法则

1.分式的加、减、乘、除、乘方、开方法则

2.分式的性质

⑴基本性质: = (m≠0)

⑵符号法则:

⑶繁分式:

①定义②化简方法(两种)

3.整式运算法则(去括号、添括号法则)

4.幂的运算性质:

① o = ② ÷ = ③ = ④ = ⑤

技巧:

5.乘法法则:⑴单×单⑵单×多⑶多×多。

6.乘法公式:(正、逆用)

(a b)(a-b)=

(a±b) =

7.除法法则:⑴单÷单⑵多÷单。

8.因式分解:⑴定义⑵方法:A.提公因式法B.公式法C.十字相乘法D.分组分解法E.求根公式法。

9.算术根的性质: = (a≥0,b≥0)(a≥0,b&gt0)(正用、逆用)

10.根式运算法则:⑴加法法则(合并同类二次根式)⑵乘、除法法则⑶分母有理化:A. B. C. .

11.科学记数法: (1≤a&lt10,n是整数=

三、 应用举例(略)

四、 数式综合运算(略)

第三章 统计初步

重点

内容提要

一、 重要概念

1.总体:考察对象的全体。

2.个体:总体中每一个考察对象。

3.样本:从总体中抽出的一部分个体。

4.样本容量:样本中个体的数目。

5.众数:一组数据中,出现次数最多的数据。

6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)

二、 计算方法

1.样本平均数:⑴ ⑵若 , ,…, ,则 (a-常数, , ,…, 接近较整的常数a)⑶加权平均数: ⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2.样本方差:⑴ ⑵若 , ,…, ,则 (a-接近 、 、…、 的平均数的较"整"的常数)若 、 、…、 较"小"较"整",则 ⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

3.样本标准差:

三、 应用举例(略)

第四章 直线形

重点相交线与平行线、三角形、四边形的有关概念、判定、性质。

内容提要

一、 直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从"图形"、"表示法"、"界限"、"端点个数"、"基本性质"等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用"线段的基本性质"论证"三角形两边之和大于第三边")

4.两点间的距离(三个距离:点-点点-线线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:

①同平行于一条直线的两条直线平行(传递性)②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成

13.公理、定理

14.逆命题

二、 三角形

分类:⑴按边分

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:

①内角和及推论②外角和③n边形内角和④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

讨论:

①定义②××线的交点-三角形的×心③性质

① 高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:

①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线⑵加倍中线⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法-反证法:

①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、 四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

┗→菱形--↑

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质)⑵中心对称(定义及性质)

4.有关定理:

①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:

①常连结四边形的对角线②梯形中常"平移一腰"、"平移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。

6.作图:任意等分线段。

初三年级上册数学知识点归纳总结:

第五章 方程(组)

重点一元一次、一元二次方程,二元一次方程组的解法方程的有关应用题(特别是行程、工程问题)

内容提要

一、 基本概念

1.方程、方程的解(根)、方程组的解、解方程(组)

2. 分类:

二、 解方程的依据-等式性质

1.a=b←→a c=b c

2.a=b←→ac=bc (c≠0)

三、 解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→

系数化成1→解。

2. 元一次方程组的解法:⑴基本思想:"消元"⑵方法:

①代入法

②加减法

四、 一元二次方程

1.定义及一般形式:

2.解法:⑴直接开平方法(注意特征)

⑵配方法(注意步骤-推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左边=0)

3.根的判别式:

4.根与系数顶的关系:

逆定理:若 ,则以 为根的一元二次方程是: 。

5.常用等式:

五、 可化为一元二次方程的方程

1.分式方程

⑴定义

⑵基本思想:

⑶基本解法:

①去分母法②换元法(如, )

⑷验根及方法

2.无理方程

⑴定义

⑵基本思想:

⑶基本解法:

①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法

3.简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、 列方程(组)解应用题

一概述

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什

么。

⑵设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

二常用的相等关系

1. 行程问题(匀速运动)

基本关系:s=vt

⑴相遇问题(同时出发):

⑵追及问题(同时出发):

若甲出发t小时后,乙才出发,而后在B处追上甲,则

⑶水中航行:

2. 配料问题:溶质=溶液×浓度

溶液=溶质 溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

三注意语言与解析式的'互化

如,"多"、"少"、"增加了"、"增加为(到)"、"同时"、"扩大为(到)"、"扩大了"、……

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:

100a 10b c,而不是abc。

四注意从语言叙述中写出相等关系。

如,x比y大3,则x-y=3或x=y 3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算

如,"小时""分钟"的换算s、v、t单位的一致等。

七、应用举例(略)

第六章 一元一次不等式(组)

重点一元一次不等式的性质、解法

内容提要

1. 定义:a&gtb、a

2. 一元一次不等式:ax&gtb、ax

3. 一元一次不等式组:

4. 不等式的性质:⑴a&gtb←→a c&gtb c

⑵a&gtb←→ac&gtbc(c&gt0)

⑶a&gtb←→ac

⑷(传递性)a&gtb,b&gtc→a&gtc

⑸a&gtb,c&gtd→a c&gtb d.

5.一元一次不等式的解、解一元一次不等式

6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

7.应用举例(略)

第七章 相似形

重点相似三角形的判定和性质

内容提要

一、本章的两套定理

第一套(比例的有关性质):

涉及概念:

①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

第二套:

注意:

①定理中"对应"二字的含义

②平行→相似(比例线段)→平行。

二、相似三角形性质

1.对应线段…2.对应周长…3.对应面积…。

三、相关作图

①作第四比例项②作比例中项。

四、证(解)题规律、辅助线

1."等积"变"比例","比例"找"相似"。

2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来

3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。

4.对比例问题,常用处理方法是将"一份"看着k对于等比问题,常用处理办法是设"公比"为k。

5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

五、 应用举例(略)

第八章 函数及其图象

重点正、反比例函数,一次、二次函数的图象和性质。

内容提要

一、平面直角坐标系

1.各象限内点的坐标的特点

2.坐标轴上点的坐标的特点

3.关于坐标轴、原点对称的点的坐标的特点

4.坐标平面内点与有序实数对的对应关系

二、函数

1.表示方法:⑴解析法⑵列表法⑶图象法。

2.确定自变量取值范围的原则:⑴使代数式有意义⑵使实际问题有

意义。

3.画函数图象:⑴列表⑵描点⑶连线。

三、几种特殊函数

(定义→图象→性质)

1. 正比例函数

⑴定义:y=kx(k≠0) 或y/x=k。

⑵图象:直线(过原点)

⑶性质:

①k&gt0,…②k&lt0,…

2. 一次函数

⑴定义:y=kx b(k≠0)

⑵图象:直线过点(0,b)-与y轴的交点和(-b/k,0)-与x轴的交点。

⑶性质:

①k&gt0,…②k&lt0,…

⑷图象的四种情况:

3. 二次函数

⑴定义: 特殊地, 都是二次函数。

⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为,则顶点为(h,k)对称轴为直线x=ha&gt0时,开口向上a&lt0时,开口向下。

⑶性质:a&gt0时,在对称轴左侧…,右侧…a&lt0时,在对称轴左侧…,右侧…。

4.反比例函数

⑴定义: 或xy=k(k≠0)。

⑵图象:双曲线(两支)-用描点法画出。

⑶性质:

①k&gt0时,图象位于…,y随x…②k&lt0时,图象位于…,y随x…③两支曲线无限接近于坐标轴但永远不能到达坐标轴。

四、重要解题方法

1.用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、ba、b、c的符号。

六、应用举例(略)

第九章 解直角三角形

重点解直角三角形

内容提要

一、三角函数

1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= cosA= tgA= ctgA= .

2. 特殊角的三角函数值:

0° 30° 45° 60° 90°

sinα

cosα

tgα /

ctgα /

3. 互余两角的三角函数关系:sin(90°-α)=cosα…

4. 三角函数值随角度变化的关系

5.查三角函数表

二、解直角三角形

1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2. 依据:

①边的关系:

②角的关系:A B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

四、应用举例(略)

第十章 圆

重点①圆的重要性质②直线与圆、圆与圆的位置关系③与圆有关的角的定理④与圆有关的比例线段定理。

内容提要

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径弧、等弧、优弧、劣弧、半圆弦心距等圆、同圆、同心圆。

3."三点定圆"定理

4.垂径定理及其推论

5."等对等"定理及其推论

5. 与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.三种位置及判定与性质:

2.切线的性质(重点)

3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

4.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角:

内角的一半: (右图)

(解Rt△OAM可求出相关元素, 、 等)

六、 一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

4.弧长公式

5.弓形面积的计算方法

6.圆柱、圆锥的侧面展开图及相关计算

七、 点的轨迹

六条基本轨迹

八、 有关作图

1.作三角形的外接圆、内切圆

2.平分已知弧

3.作已知两线段的比例中项

4.等分圆周:

486、3等分

九、 基本图形

十、 重要辅助线

1.作半径

2.见弦往往作弦心距

3.见直径往往作直径上的圆周角

4.切点圆心莫忘连

5.两圆相切公切线(连心线)

6.两圆相交公共弦

统计学几个名词解释 标准偏差和标准误差怎么区分 俩者的计算公式是什么?

 标准偏差(Std Dev,Standard Deviation) -统计学名词.一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度.标准偏差越小,这些值偏离平均值就越少,反之亦然.标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量.标准偏差公式:S = Sqr(∑(xn-x拨)^2 /(n-1))公式中∑代表总和,x拨代表x的算术平均值,^2代表二次方,Sqr代表平方根.

例:有一组数字分别是200、50、100、200,求它们的标准偏差.

x拨 = (200 50 100 200)/4 = 550/4 = 137.5

S^2 = [(200-137.5)^2 (50-137.5)^2 (100-137.5)^2 (200-137.5)^2]/(4-1)

标准偏差 S = Sqr(S^2)

STDEV基于样本估算标准偏差.标准偏差反映数值相对于平均值 (mean) 的离散程度.

标准误差 图1 [编辑本段]基本概述在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量.对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差.

标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差.[编辑本段]计算方法设n个测量值的误差为ε1、ε2……εn,则这组测量值的标准误差σ等于,见图1.

由于被测量的真值是未知数,各测量值的误差也都不知道,因此不能按上式求得标准误差.测量时能够得到的是算术平均值,它最接近真值(N),而且也容易算出测量值和算术平均值之差,称为残差(记为v).理论分析表明①可以用残差v表示有限次(n次)观测中的某一次测量结果的标准误差σ,其计算公式为,见图2.图2

对于一组等精度测量(n次测量)数据的算水平均值,其误差应该更小些.理论分析表明,它的算术平均值的标准误差.

标签:

版权声明:

1、本文系转载,版权归原作者所有,旨在传递信息,不代表看本站的观点和立场。

2、本站仅提供信息发布平台,不承担相关法律责任。

3、若侵犯您的版权或隐私,请联系本站管理员删除。

4、本文由会员转载自互联网,如果您是文章原创作者,请联系本站注明您的版权信息。

学习方法推荐

本网站所有的文章都转载与网络(版权为原作者)我们会尽可能注明出处,但不排除来源不明的情况。转载是处于提供更多信息以参考使用或学习、交流、科研之目的,不用于商业用途。转载无意侵犯版权,如转载文章涉及您的权益等问题,请作者速来电话和邮件告知,我们将尽快处理。